Sucrose-derived exopolymers have site-dependent roles in Streptococcus mutans-promoted dental decay.
نویسندگان
چکیده
We have constructed a panel of mutants of S. mutans V403 which are defective in one or more of the glucosyltransferase genes (gtfB, C or D) or the fructosyltransferase gene (ftf). These strains have been tested for virulence in a gnotobiotic rat caries model with reference to both buccal (smooth surface) and sulcal (pit and fissure) carious lesions. Our data suggest differing roles for degradable and non-degradable polymers at buccal and sulcal sites. Non-degradable polymers (made by products of the gtfB and C genes) contributed significantly to the severity of smooth surface lesions. However, our studies suggested their role in pit and fissure lesions was not as important as the role of degradable polymers. Specifically, a mutant deficient in the major insoluble glucan synthesizing activity (product of the gtfB gene) was 25% more cariogenic on sulcal surfaces than was the wild-type V403 strain. We propose that extracellular glucosyltransferases and fructosyltransferase compete for sucrose and that this competition influences pathogenicity at differing tooth sites.
منابع مشابه
Roles of Salivary Components in Streptococcus mutans Colonization in a New Animal Model Using NOD/SCID.e2f1−/− Mice
Streptococcus mutans plays an important role in biofilm formation on the tooth surface and is the primary causative agent of dental caries. The binding of S. mutans to the salivary pellicle is of considerable etiologic significance and is important in biofilm development. Recently, we produced NOD/SCID.e2f1(-/-) mice that show hyposalivation, lower salivary antibody, and an extended life span c...
متن کاملPolyphenol-Rich Extract from Propolis Reduces the Expression and Activity of Streptococcus mutans Glucosyltransferases at Subinhibitory Concentrations
Tooth decay is an infectious disease, whose main causative agent identified is Streptococcus mutans (S. mutans). Diverse treatments have been used to eradicate this microorganism, including propolis. To date, it has been shown that polyphenols from Chilean propolis inhibit S. mutans growth and biofilm formation. However, the molecular mechanisms underlying this process are unclear. In the prese...
متن کاملA Caries Vaccine? The state of the science of immunization against dental caries.
Studies performed in numerous laboratories over several decades have demonstrated the feasibility of immunizing experimental rodents or primates with protein antigens derived from Streptococcus mutans or Streptococcus sobrinus against oral colonization by mutans streptococci and the development of dental caries. Protection has been attributed to salivary IgA antibodies which can inhibit sucrose...
متن کاملEffect of an orphan response regulator on Streptococcus mutans sucrose-dependent adherence and cariogenesis.
Streptococcus mutans is the principal acidogenic component of dental plaque that demineralizes tooth enamel, leading to dental decay. Cell-associated glucosyltransferases catalyze the sucrose-dependent synthesis of sticky glucan polymers that, together with glucan binding proteins, promote S. mutans adherence to teeth and cell aggregation. We generated an S. mutans Tn916 transposon mutant, GMS3...
متن کاملInactivation of the ciaH Gene in Streptococcus mutans diminishes mutacin production and competence development, alters sucrose-dependent biofilm formation, and reduces stress tolerance.
Many clinical isolates of Streptococcus mutans produce peptide antibiotics called mutacins. Mutacin production may play an important role in the ecology of S. mutans in dental plaque. In this study, inactivation of a histidine kinase gene, ciaH, abolished mutacin production. Surprisingly, the same mutation also diminished competence development, stress tolerance, and sucrose-dependent biofilm f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEMS microbiology letters
دوره 128 3 شماره
صفحات -
تاریخ انتشار 1995